

2016 APMP Mid-year Meeting Technical Workshop: Semiconductor

Wafer Metrology at KRISS

June 8, 2016

Chu-Shik Kang

cskang@kriss.re.kr

Outline

Introduction

- Wafer metrology
 - wafer thickness
 - wafer thickness and refractive index
 - warpage (warp, bow, sori, etc)
 - depth of TSV (through silicon via)
 - diameter of TSV (through silicon via)

Evolution of silicon wafers

- Productivity ∞ (diameter)²
- Size being larger (thickness < 1 mm)</p>

Compact size with high performance

cu

Wafer level packaging and TSV

Solution: multi-level structure

wafer-level packaging Wafer-on-wafer structure, Through-Silicon Vias (TSVs) and bumps replace wires

(u)

Wafer level packaging and TSV (2)

Measurement of thickness profile and warpage is important
 Measurement of depth and diameter of TSVs is important

Wafer thickness measurement

1. Mechanical measurement system

Mechanical measurement of thickness

Contact type measurement high precision length gauge 2-probe system uncertainty (k=2) 50 nm (single point)

Cu

Mechanical measurement of thickness (2)

Mechanical measurement of thickness (3)

Strong point:

high precision measurement of "geometrical thickness"

good for small area measurement

Weak point:

- Iimited measurement range
- not efficient for whole area measurement of large wafers

Wafer thickness measurement

2. Michelson type spectral interferometer

Optical interferometer (1)

Interference intensity changes by

- 1. change in OPD (by moving one mirror)
- 2. change in frequency of light

- c: speed of light in vacuum
- f: frequency of light
- n: refractive index of air

2016 APMP Mid-year Meeting Technical Workshop

(u)

interferometer (2)

2016 APMP Mid-year Meeting Technical Workshop

(u)

Spectral interferometer (1)

cu

Schematic of spectral interferometer

BS: beam splitter, OSA: optical spectrum analyzer, M: mirror, N: refractive index of wafer

cu

Thickness and refractive index

OPD of Ray 1: $Z_1 = 2(L_B + T + L_C - L_A)$

OPDs of Ray 2: $Z_2 = 2N \cdot T$ $Z_3 = 2(L_B + N \cdot T + L_C - L_A)$

Geometrical thickness of wafer: $T = (Z_1 + Z_2 - Z_3)/2$

Refractive index of wafer: $N = Z_2/(2T)$

Thickness and refractive index can be measured simultaneously

Flow chart of measurement

$$I(f,Z) = I_0(f) \cdot \left\{ 1 + \cos\left(\frac{2\pi f}{c/Z}\right) \right\} = I_0(f) \cdot \left\{ 1 + \cos\phi(f,Z) \right\}$$

Experimental setup

scanning range:

- 🗆 lateral: 90 mm
- vertical: 90 mm

Experimental setup

Spectrum and FFT results

KRES

Phase, T, and N

- OPD
- $Z_1 = 1.777 \times 10^{-3} \text{ m}$
- $Z_2 = 2.323 \times 10^{-3} \text{ m}$
- $Z_3 = 3.459 \times 10^{-3} \text{ m}$
- Geometrical thickness:
 T = 320.699 μm
- Group refractive index:
 N = 3.6208

Uncertainty of thickness measurement (k=1): 48 nm

Wafer thickness measurement

3. Fizeau type spectral interferometer

Fizeau type spectral interferometer

optical source: super luminance diode (SLD)

- center wavelength: 1550 nm
- bandwidth: 70 nm (FWHM)

measurement range:

- □ diameter: up to 300 mm
- thickness: 0.1 mm 1 mm

measurand

thickness

- center thickness (CT)
- total thickness variation (TTV)

□warpage

-warp, bow, sori, etc

Definition of measurands

24

Structure of the interferometer

Optical path differences (OPD)

$$Z_1 = 2 L_g$$

 $Z_2 = 2NT$
 $Z_3 = 2(NT + L_3)$

Flow chart of measurement

Profiler

Interference signal & its FFT

Thickness profile (example)

cu

Warp measurement (example)

Gravitational sag correction

Measure each side of wafer by flipping
 Gravitational effect eliminated by subtracting results

warp with gravity effect extracted gravity effect

warp without gravity effect

Gravitational sag corrected results

gravity effect corrected warp

gravity effect corrected bow

cu

Comparison of warp values

• with gravity: 248.6 μ m, without gravity: 7.2 μ m

TSV measurement

1. Depth measurement

Schematic diagram of setup

- spectral interferometer
- Sample stage is moved to scan the surface

Experimental setup

Fourier spectrum

Profile of TSV

Suth 145 µm

 $25 \mu m$

Depth: 144.86 μm (@ diameter 20 μm) Repeatability: 30 nm

TSV measurement

2. Diameter measurement

Schematic diagram of setup

reference mirror is blocked
 → confocal microscope
 sample is scanned by moving stages

Example of measurement results

repeatability: 8 nm, Uncertainty: 230 nm (diameter: 50 μm)

cu

Summary

- wafer metrology at KRISS
 - wafer thickness measurement
 - mechanical method
 - geometric thickness, not efficient for large area
 - optical methods: spectral interferometer
 - Michelson type: thickness and refractive index measurement,
 - Fizeau type: optical thickness and warpage measurement over whole surface
 - TSV measurement
 - depth measurement: spectral interferometry
 - diameter measurement: confocal microscopy

Staffs related to these works (in alphabetic order)

Dr. Eom, Tae Bong

Dr. Jin, Jonghan

Dr. Kang, Chu-Shik

Dr. Kim, Jae Wan

Dr. Kim, Jong-Ahn

Dr. Lee, Jae Yong

Dr. Park, Jung-Jae

Thank you for your attention!

